

Краткое руководство

ИНДИКАЦИЯ

Прочтите инструкцию по применению

Более подробные примечания и полная информация доступны в полной инструкции по применению продукта. Этот документ доступен: www.niceforyou.com

Изучите и соблюдайте инструкцию.

Прочтите этот документ перед первым использованием продукта и сохраните его для использования в будущем!

Обслуживание и ремонт

Изделие не требует обслуживания и ремонта.

В случае поломки или дефекта обращайтесь к дилеру или производителю.

Осторожно

Неправильное использование

Информация об ответственности производителя распространяется на устройство в версии, действующей на момент покупки.

Производитель не несет ответственности в случае неподходящей автоматической или ручной настройки параметров или несанкционированного использования устройства.

Ремонт не разрешен

Ремонт должен выполняться только производителем. В случае нарушения безопасность подвергается риску и приводит к аннулированию гарантии.

Разрешенные источники энергии

Источник питания должен соответствовать требованиям безопасных источников питания низкого напряжения (SELV, «очень низкое безопасное напряжение»).

Требуются предохранительные устройства

Запрещается использовать устройство в качестве компонента безопасности в соответствии с Директивой по машинному оборудованию 2006/42 / ЕС, Регламентом о строительных изделиях 305/2011 / ЕU или другими правилами техники безопасности. На установках с потенциальным риском требуются дополнительные устройства безопасности!

1 Обзор продукта

Компоненты	пролукта

LP22 / LP21 Детектор движения

Вставные клеммные (1шт питание, 1шт шлейф, 2шт реле).

Инструкция по быстрой настройке

Табл.1: Комплект поставки

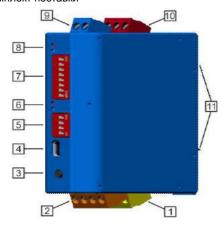


Рис.1: Изображение продукта LP21 / LP22

Индекс	Составная часть
1	Выход клеммной колодки 1:
	• Реле 1 (желтая)
2	Клеммная колодка подключения петель (оранжевая)
3	Кнопка сброса
4	USB соединение
5	DIP-переключатель 2 (LP22)
6	Светодиод петли 1 канала (красный + синий) LP21
	Светодиод петли 2 канала (красный + синий) LP22
7	DIP-переключатель 1
8	Светодиод петли 1 канала (красный + синий) LP22
9	Клеммная колодка питания (синяя)
10	Выходная клеммная колодка 2:
	Реле 2 (красная)
11	Устройство для монтажа на DIN-рейку

Таб.2: Список компонентов LP21 / LP22

Технические данные	
Габаритные размеры	22,5 х 79,0 х 81,0 мм (Ш х В х Д без клемм)
Блок питания (1х синий)	10 - 30 В постоянного тока / 10 - 26 В переменного тока, макс. 2 Вт (SELV)
Тип защиты	IP20
Рабочая температура	-37 – +70 °C
относительная влажность	< 95 % (без конденсата)
Входы петель (оранжевый, 2-полюсный и	ли 4-полюсный для двухканальных вариантов
• диапазон индуктивности (max)	20 – 700 μН (см. примечание 1)
• рекомендуемый диапазон индуктивности	100 – 300 μΗ
• рабочая частота	30 – 130 kHz
• Длина кабеля. Максимум.	200 m
• Внутреннее сопротивление. Максимум.	$20~\Omega~($ включая кабель $)$
2 реле (1шт разъем желтый + 1шт разъем красный)	Максимум. 48 В (AC / DC), 2 A, 60 Вт,125 ВА (SELV) мин. 1 мА / 5 В
Переключатель конфигурации 1 (все варианты)	8-полюсный DIP-переключатель
Переключатель конфигурации 2 (2-канальные варианты)	4-полюсный DIP-переключатель
Светодиоды (1шт синий и 1шт кра	асный для каждого канала
шлейфа) Сброс	Нажать кнопку
Интерфейс ПК	Разъем USB, тип mini AB

Табл. 3: Технические данные

Источники SELV - это источник низкого напряжения, который гарантирует, что в схему защиты не проникнет более высокое напряжение, никакая внешняя или внутренняя часть не может быть под опасным напряжением.Они имеют следующие характеристики:

- двойная развязка между входной цепью, подключенной к источнику сетевого напряжения, и выходной цепью низкого напряжения при помощи встроенного изолирующего трансформатора;
- встроенное устройство ограничения выходного напряжения до 60 В при возникновении неисправности внутри источника.

3AMETKA

Ограничения индуктивности петли

Если индуктивность контура находится за пределами рекомендуемой области, доступен только один частотный уровень. Аналогичным образом, максимальное сопротивление контуров уменьшается в случае низкой индуктивности контуров за пределами рекомендуемой области.

2 Описание товара

Детекторы движения серии LP21 / LP22 - это электронные датчики для индуктивной регистрации металлических объектов. Транспортные средства и, в зависимости от устройства, их модель и направление движения могут быть обнаружены с помощью до двух индукционных контуров.

Детекторы движения работают в сочетании с широким спектром индукционных контуров и систем управления, таких как преобразователи частоты и системы управления ПЛК.

Области применения могут быть в сфере дорожного движения, контроля дверей и шлагбаумов, или в секторах наблюдения за парковками и туннелями.

Детектор движения LP21 / LP22 предназначен для установки в шкафу управления или корпусе, аналогичном шкафу управления.

Детекторы движения серии LP21 / LP22 обладают следующими характеристиками:

- 1 канал петли (LP21) или 2 канала петли (LP22)
- 2 беспотенциальных релейных выхода
- 1 разъем для питания (24 В переменного / постоянного тока)
- 1 интерфейс USB для диагностики и расширенной конфигурации
- 8-полюсный DIP-переключатель и 4-полюсный DIPпереключатель (LP22) для настройки
- Светодиоды для отображения состояния детектора и петли
- компактный пластиковый корпус для монтажа на DIN-рейку в шкафу управления
- гальваническая развязка между контурами и электроникой
- автоматическая настройка системы после включения
- постоянная корректировка частотных дрейфов для подавления влияния окружающей среды
- чувствительность не зависит от индуктивности контура
- Фиксированное время выдержки (удержания) независимо от степени занятости петель
- определение направления с двумя петлевыми каналами (LP22)
- мультиплексирование предотвращает взаимные помехи между шлейфовыми каналами (LP22)

Индуктивные датчики серии LP21 / LP22 предлагают следующие варианты настроек:

- Переключение между двумя частотными уровнями
- Вывод в виде сигнала присутствия, импульса или направления (2- канальный вариант)
- Выбор логики направленности (2-х канальные варианты)
- Порог срабатывания регулируется для каждого канала на 4 уровнях с помощью DIP-переключателя
- регулируемое время ожидания 5 минут или бесконечное с помощью DIP-переключателя

3 Описание подключений

3.1 Источник питания

Детектор может работать от постоянного или переменного напряжения в соответствии с требованиями безопасного сверхнизкого напряжения (SELV).

Осторожно

Обратите внимание на допустимый источник питания Солюдайте технические данные и правила техники безопасности! Подключения к синей клеммной колодке: допускается использование блока питания с переменным либо постоянным напряжением.

VCC = Положительный

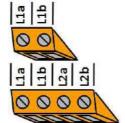

Gnd = Отрицательный

Рис2: Пример разъема питания (синий)

3.2 Входы петли

До двух аналоговых входов для индукционных контуров на клеммной колодке расположены на нижней стороне детектора трафика. Клеммная колодка может быть 2-полюсной (LP21) или 4-полюсной (LP22), в зависимости от количества каналов.

Индукционные контуры подключаются к оранжевым клеммным колодкам, как показано на рисунке.

L1a, L1b Подключения канала 1 индукционной петли (LP21)

L2a, L2b Подключение канала 2 индукционной петли (LP22) (2-канальные версии)

Рис.3: Соединения контуров 1-канальная или 2-канальная версии (оранжевый)

3.3 Сигнальные выходы

3.3.1 Релейные выходы с переключающим контактом

Выходы в версиях с реле выполнены как переключающие контакты. Это позволяет подключать контакты как нормально закрытые (NC) или как нормально открытые (NO). Реле являются беспотенциальными и подходят для различных типов переключателей.

Выходной сигнал реле также можно инвертировать (по умолчанию). В этом случае при включении источника питания нормально разомкнутые контакты функционируют как нормально замкнутые контакты, и наоборот. Это происходит путем переключения между принципом открытой и закрытой цепи.

Кроме того, проблемы контура можно интерпретировать как петля занята или свободна.

Состояние	Нормально замкнутый контакт (NC)		Нормально открытый контакт (NO)		
Состояние	комманда подана	комманда снята	комманда подана	комманда снята	
Напряжение выключено			_/_	_/_	
Детектор готов, петля свободна		∠ ∟	<u>/</u> L	<u>_</u>	
Петля занята	_/_			_/_	
Ошибка петли	(по умолчанию: петля занята)				

Табл. 4: состояние переключателя реле

Аналоговые выходы релейных версий (-R24) подключены красные и желтые клеммные колодки, как показано на следующем рисунке.

NO 1/2 Нормально разомкнутый контакт на выходе 1 или выходе 2

COM 1/2 Общий контакт на выходе 1 или выходе 2

NC 1/2 Нормально замкнутый контакт на выходе 1или выходе 2

Рис.4: Подключение реле 1 (желтый) и 2 (красный)

4 Описание функций

4.1 Светодиодные индикаторы состояния

Светодиоды на лицевой стороне отображают состояние петли и детектора.

Для каждого канала шлейфа есть синий и красный светодиоды:

- красный светодиод информирует о состоянии петли
- синий светодиод информирует о состоянии детектора
- Расположение светодиодов на LP22: петля 1 вверху слева, петля 2 посередине

Красный LED	Синий LED	Описание статуса
		нет питания, устройство неактивно
	•	детектор готов, шлейф подключен, объект не обнаружен
		детектор готов, шлейф подключен, объект обнаружен
•		петля не подключена, обрыв петли, короткое замыкание петли
	☀ 1 Hz	Работает после устранения предыдущего отказа контура
	₩ 5 Hz	перестройка частоты выполняется
	∵	после перенастройки частоты оба светодиода одновременно отображают заданную частоту контура мигающим кодом (см. иллюстрированный пример мигающего кода светодиода)

Табл. 5: сигнальные цвета светодиода

Пояснения к светодиодным символам

Схема мигания светодиодов после настройки частоты

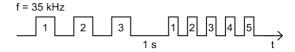


Рис.5: Светодиодный индикатор частоты петли

4.2 Кнопка сброса

Сброс устройства выполняется с помощью кнопки сброса на передней панели следующим образом:

Функция	Описание	Нажмите кнопку	Индикация
сброс / корректировка	выполняет перенастройку частоты и удаляет сообщения об ошибках	удерживайте 1 секунду	красный светодиод мигает
заводские настройки	сбрасывает устройство до заводских настроек (настройки DIP- переключателя по умолчанию)	удерживайте 5 секунд	синий светодиод мигает

4.3 Настройки DIP-переключателя

Параметр	Описание
Чувствительность	Порог включения при появлении сигнала в петле
Диапазон частот	Частота колебательного контура контура в интервале
Время удержания	Максимальная длительность выходного сигнала до автоматической перенастройки канала петли
Режим выходного сигнала выхода 2	Переключение между выходом в виде непрерывного или импульсного сигнала на выходе 2
Время удержания реле выхода 2	Время выхода сигнала при активированном импульсном сигнале на выходе 2
Инверсия выходного сигнала	Переключение между принципом разомкнутой и замкнутой цепи для сигнальных выходов
Обнаружение направления	Переключение между обнаружением присутствия и обнаружением направления движения для обоих выходов (2-канальные варианты)
Логика направления	Логика оценки направления движения в соответствии с появлением сигнала на петле (см. Полное руководство по эксплуатации!)

Табл. 7: Описание настроек

1-канальные варианты имеют 8-полюсный DIP-переключатель для настройки детектора.

DIP	Обозначение	Функция
1	значение а	Чувствительность петли 1
2	значение b	Чувствительность петли 1
3	Частота	Частота петли
4	Время удержания	Время до перенастройки петли
5	Выход 2	Режим выходного сигнала 2
6	Edge 2	момент переключения (появления сигнала) на выходе 2
7	Инв.выход1	выход 1 инверсия сигнала
8	Инв.выход2	выход 2 инверсия сигнала

Табл. 8: Назначение DIP-переключателя (стандарт, 1-канальный вариант)

2-канальные варианты имеют 8-полюсный и 4-полюсный DIP-переключатель для настройки детектора.

DIP1	Обозначение	Функция
1	значение 1а	Чувствительность петли 1
2	значение 1b	Чувствительность петли 1
3	значение 2а	Чувствительность петли 2
4	значение 2b	Чувствительность петли 2
5	Частота	Частота петли
6	Время удержания	время задержки до переналадки
7	Выход 2	Режим выходного сигнала 2
8	Edge 2	время переключения выхода 2

Табл. 9: Назначение DIP-переключателя 1 (стандарт, 2-канальные варианты)

DIP2	Обозначение	Функция
1	Dir. Mode	определение направления
2	Dir. Logic	логика направления
3	Инв.выход1	выход 1 инверсия сигнала
4	Инв.выход2	выход 2 инверсия сигнала

Табл. 10: Назначение DIP-переключателя 2 (стандарт, 2-канальные варианты)

С помощью DIP-переключателя можно установить следующие параметры:

Параметр	DIP- переключатель	Положение	Значение
Чувствительность	значение а значение b	ON ON	0,01 % (высокая)
	значение а значение b	OFF ON	0,04 %
	значение а значение b	ON OFF	0,16 %
	значение а значение b	OFF OFF	0,64 % (низкая)

Диапазон частот	Частота	OFF ON	низкая частота высокая частота
Время ожидания	Время	OFF	5 мин
	удержания	ON	Бесконечно
Режим выходного	Выход 2	OFF	Segnale continuo
сигнала		ON	Segnale impulso
Момент появления импульса	Edge 2	OFF ON	во время наезда при освобождении
Инверсия	Инв.выход	OFF	Инверсия
выходного сигнала	1/2		Без инверсии
Обнаружение	Dir. Mode	OFF	Присутствие
направления		ON	Направление
Логика направления	Dir. Logic	OFF	Непрерывный сигнал 2 Автомобиль движется в неправильном направильнии 1

Табл.11: Настройки с помощью DIP-переключателя (по умолчанию)

PRODUTTORE

NICE SPA Via Callalta,1 31046 Oderzo (TV) Italia

MADE IN GERMANY